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Although the quantum laws are time-reversal invariant, a contradiction appears if two measurements performed by a single 

observer, and described according to these laws, are performed in two opposite directions of time. This contradiction leads to 

bringing forth the concept of an observer’s private time, and then to building up a temporal parameter common to several 

observers from their private times. Time asymmetry turns out to be a consequence of the latter construction. 

1. Introduction. Although the quantum mechanical 
law of motion is in most cases as time symmetric as 
its classical counterpart [ 11, it is often stated that the 
measurement process [2] introduces a specific time- 
asymmetric element in quantum theory [3,4]. This 
seems to be obvious in the usual interpretation where- 
in the observation of a quantity described by a linear 
hermitian operator 0, with eigenstates bj> brings 
about a discontinuous change of the state vector of 

a system from the initial state I$> to an eigenstate 

I+, with predicted probability I(ail $)I *. Several in- 
vestigators looked for the conditions required to ob- 

tain successful “retrodictions” equivalent to predic- 
tions when discontinuous transitions to the eigen- 
states are assumed [S-7]. They found that success- 
ful retrodiction is possible for a particular construc- 
tion of statistical ensembles: the retrodictor has to 
suppose equal a priori probabilities for the initial 

states of the systems. The latter assumption is not 
valid in the general case. But this lack of validity is 

related to a lack of equivalence between a priori and 
a posteriori inference [ 51 which is external to quan- 
tum theory. 

The situation is different if one considers Everett’s 
interpretation of measurement [8,9]. In this frame- 
work one must ascribe a state vector to the observer 
(or at least to a recording apparatus). Let this vector 
be lv[...]) where the points in the brackets stand for 
a fixed initial memory configuration. If the initial 

state of the system is 

Iid = &bi), with 
i 

pi = (ajlJl> , (1) 

the initial state of the total system (measured system 
t observer) is the tensorial product of I$) and l~[...]>: 

IGT> = ( F Cjbj)) (TJ[*.-1) e 

After the measurement of 0, , each observer’s memory 
state is correlated with a particular eigenstate bj): 

IJ/T’) = CCjlaj) I?)[-.dj]) . 

i 

The transition between (2) and (3) obeys the 
SchrSdinger equation. According to Everett [8,9] 
this transition is to be interpreted as the splitting of 

the world into several branches, each corresponding 

to a particular outcome ai of the measurement. As the 
splitting takes place in the direction of increasing 
time, it seems that some time-asymmetric features 
persist in this interpretation of the measurement pro- 
cess. But the direction of this time asymmetry is in 
fact arbitrary. Indeed, the continuous change from 
I tiT> to ItiT’> according to the Schradinger equation 
is invariant under time reversal. I $I~‘>, which is usual- 
ly thought of as being later than IGT>, may be earlier 
as well. Here again the apparent time asymmetry 
results from an implicit assumption about the direc- 
tion of inference. 

In this paper we try to clear up the foundations 
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of this assumption. For this purpose, we show in 

section 3 that although a measurement can, according 

to quantum laws, be performed in either time direc- 
tion, there appears a contradiction when a single ob- 
server is assumed to perform some measurements in 
a given time direction and other measurements in the 

opposite time direction. A careful analysis of this 
contradiction shows that it is strongly related with the 

concept of an external time wherein every event can 
be located, irrespective of the apparatus or observer 
recording it. This remark leads in section 4 to the 
introduction of three distinct definitions for the 
physical entity called time. They are referred to as 
private time, common time, and external time. This 

distinction proves to be a good way towards a precise 
understanding of how the notion of irreversibility 
and that of time asymmetry may be related. Such a 
task must be prepared (next section) by finding a 
formulation of the stages of measurement which 
does not refer to any direction in external time. 

2. Generalizing the concept of preparation of an 
experiment. In the time-asymmetric conception of 
measurement, the initial condition (2) is the result 
of the preparation of a system S and an apparatus A 
just before the interaction. But the time-reversed 
conception holds as well: (2) may be the result of 
the “postparation” of S and A just “after” the inter- 

action, while (3) may be the correlated state just 
“before” this interaction. The equivalence of both 

descriptions leads us to replacing the couples (prepa- 
ration; later observation) and (postparation; earlier 

observation) by a unique concept. We assume that 
the statement describing a measurement contains 
two pieces of information: a “necessary condition” 
defining the possible outcomes, and a given outcome 
among the possible ones. In the language of experimen- 
tal set up, the “necessary condition” refers to the 
preparation or postparation of apparatus + system, 
while the outcome is the result observed respectively 
later or earlier. In quantum theory, the “necessary 
condition” is denoted by the observable, while the 
outcome is an eigenvalue of this observable. An ob- 
servable can be thought of gathering all possible ex- 
perimental conditions which enable one to measure 
a given quantity. We may express this by defining a 
surjective function between the set of “necessary 
conditions” and the set of observables 
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S 

Nj +-Ok(j) ’ 

where k(‘J is an integer associated to j. 
Besides the recording of an outcome, Everett’s 

picture of a measurement should then include the 
setting down of the corresponding “necessary con- 
dition”. This can be carried out by introducing a 
second-order observer who prepares (postpares) the 
experiment. To describe a measurement in such a 
way, the first total state vector to write down is 

I@, = 7 19Plr,[...],” lZ[...]) ) 
( 1 (4) 

where 1$>(i) is the state vector of a given system, 
lr,[...]>(i) the state vector of the measuring apparatus, 
and 1Z [...I) the state vector of the second-order ob- 
server. Each particular necessary condition is denoted 

by the superscript (j). Such a condition specifies the 
apparatus and system under consideration, together 
with their initial (final) state. Then 

l@T, = c lIL)“‘l17[...1,“‘lZ[..~~], 
i 

(5) 

represents a state in which the second-order observer 
is aware of (or chooses) thejth necessary condition. 
The measuring interaction between the system and 
the apparatus gives 

I@) = C C$(i)laf(i)) l,[...af(j) j(i) 
( j i I 1 

X Z[...Nj]) , (6) 

where a:(j) is the ith eigenvalue of the observable 
OkCj). At last, the result of an interaction leading the 
second-order observer to known the outcome register- 

ed by the apparatus is 

X IZ [...(Nj, a;“‘)]> . (7) 

Several other intermediary states might have been 

considered. For instance, instead of (6) and (7), we 

could have had 
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x lZ[...]> ) 

i j 

x lz[...ay]> . (8) 
The state I&) describes a situation in which the 
second-order observer is aware of a certain number 
ar . ‘(j) But this number cannot have, for this observer, 
the meaning of an outcome for the measurement of 

OkCi), since he knows no necessary condition for it. 
We shall thus assume in the following that a measure- 
ment sequence must take the form (4)-(7). 

3. Is an observer able to perform experiments in 
both time directions? Due to the time-reversal in- 
variance of an interaction described by the Schrodinger 

equation, a measurement sequence of the form (4)- 
(7) is able to follow the usual direction of increasing 

time or the opposite one as well. The perfect formal 

equivalence between the time directions of quantum 
measurement gives rise to the classical paradox of a 
time-symmetric theory confronted with a time-asym- 
metric scientific practice. This would actually be 
paradoxical if such a formal equivalence between the 
time directions of measurement allowed any observer 
to use both. To investigate the latter point, let us 
suppose that a measurement Ma described by the 
sequence (4)-(7) follows the subsequent chronology: 
between tl and t2, the total state is (5). Between t2 
and t3, the total state is (6), and between t3 and t4 
the total state is (7). Another measurement Mb is 
performed at t4 by the observer whose state vector is 
lZ[+*.(A’j$ af(“>]). A state IZ[...(Ni, afC1’>]) is either 
the initial state of the observer Z, if Mb takes place 
forwards in time, or Z’s final State if Mb takes place 
backwards in time. 

For one given observer’s initial (final) state, this 
measurement leads to the following sequence: 

l$6T) = F l$*)““lT* [...I)“” 
( 1 ) 

lZ[...(Nj,fZf(j))]), 

lffJFT) = C I$*)“” ITJ* [...])(j” IZ[...(Nj,tZf(j));~]) , 
J 

(9) 

X IZ[...(Ni,ar(j');Ni*']), (10) 

@;T) = c ,&;*(i’)@*(f))lq* [...$*(f)]) 
1 i’ 

X IZ[...(Nj,a:“‘);(~~, b;*(“))]). (11) 

The total states (9)-( 11) describe the system respec- 

tively t4 and t5, 5 t and t6, t6 and t7. If the two mea- 
surements are performed in the same time directions, 

i.e. if the times tl to t7 are such that tl > t2 > tg 
> t4 > t5 > t6 > t7, or tl < t2 < t3 < t4 < t6 < t7, 
no difficulty is met. But let us assume that the first 
measurement is performed in a given time direction 
and the other in the opposite one, according to the 
following scheme: tl < t2 < t3 < t4, t4 > t5 > t6 
> t7 and t3 < t6 < t4. In this situation, there appears 
a contradiction: At any instant t’ included within the 
interval (t3, t6), the memory states of the observer 
are given both by (7) and by (11). What is then the 
actual set of memory states at t’? 

Before answering the latter question, its precise 

meaning must be investigated. As a starting point, 
notice that the difficulty which is brought out by 
this question can be formulated more clearly if the 
measurement process (4)-( 11) is described from two 

distinct viewpoints. 
The first point of view we shall consider is that of 

an additional observer (let us call him A,). This ob- 
server Au is supposed to locate the events and to 

describe quantum interactions between the system, 
the apparatus and the observer Z, in a time which is 
a passive framework, completely independent of the 

events or observers’ memory states being located in 
it. If two measurements are performed by Z in two 
opposite directions of this dimension (referred to as 
“external time” in the following), A, cannot decide 
which set of Z’s memory states ((7) or (11)) represents 
the actual set of possible outcomes he can obtain at 
t’. From the point of view of the observer A,, who 
locates the events in an external time, the previous 
contradiction thus persists although its formulation 
is slightly different. 

On the other hand, if the point of view of the ob- 
server Z is adopted, the situation is completely differ- 
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ent. His sequence of memory states is the following, 
irrespective of the location of each state in the exter- 

nal time: 

I-1 , (12) 

L..yil 9 (13) 

[...(A$, a;“‘)] 

[...(n;,o:(i)):N;] ) 

(14) 

(15) 

[...(Npy); (y, b;*(f))] . (16) 

This means that in state (14), Z knows the neces- 

sary condition and the outcome of the measurement 

Ma, whereas in state (16) he knows the necessary 
conditions and the outcomes of the measurements 
Ma and Mb. For him, the measurement Mb has either 
been performed (memory state (16)) or not (memory 
state (14)). For Z, there is no ambiguity about his 
own memory state. 

It is clear that the above-mentioned contradiction 
cannot be expressed in terms of the internal memory 
states of the observer Z who performs the measure- 
ments Ma and Mb. This contradiction is only related 
with the location of the events in an external time. 

4. Private time and common time. At this stage, it 
is necessary to analyse the operational meaning of the 
concept of “external” time. The investigation starts 

with a study of what may be called a private time, 
which refers to a sequence of observer’s internal 
memory states. Then, the question of how to correlate 
two or more private times to build up a common time 
will be dealt with. 

Private time may be defined as the numerical 

labeling of the observer’s memory states. Let us as- 
sume that a label is an interval of real numbers: (tpl , 

tp2). Two minimal conditions must be imposed to 
this labeling: 

(1) Two different memory states correspond to 
two labels whose intersection may be one number 
at the most. 

(2) If a memory sequence m’ is obtained by append- 
ing an isolated necessary condition or an outcome to 
the sequence m, there is an intersection between the 
label of m and the label of m’. 

For instance, if the memory state (14) has the 
label (tpl , tp2) and if (15) has the label (tp3, tp4), 
we must have either tp2 = tpg or tpl = tp4 in order 
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to fulfill the two requirements. Moreover, it is easy 
to show that, according to these requirements, any 

set of memory states is labeled in such a way that a 
sequence of increasing information is associated with 
a sequence of either monotonically increasing or 

monotonically decreasing real numbers tp. The direc- 
tion of private time is thus unique, although it is 
arbitrary. 

A new analysis of the asymmetry between predic- 
tion and retrodiction in quantum mechanics can now 
be undertaken. According to the usual formulation 

of this asymmetry, quantum probabilistic laws are 
successful when they apply to the future, while they 
generally fail when applied to the past. This formula- 
tion amounts to relating the previous asymmetry to 
an external time wherein the words “past” and “fu- 
ture” are defined. Here instead, we will show that 
the distinction between two directions of quantum 
inference can be expressed without reference to any 
external time. 

Let us first consider an observer’s memory state 

which contains the result of a measurement of the 
observable 0, performed on n systems: 

[...(N,l,aj,);(N,z,aj,>; . . ..(~~.,ai,)l. (17) 

Next, we write another observer’s memory state con- 
taining both the informations of (17) and the specifi- 
cation of n’ necessary conditions Nb k : 

[...Wol,ql); ...;(~o,,aj,);~~l; . . ..A$.,] . (18) 
These necessary conditions Nbk describe the initial 
(final) state of an apparatus allowing to measure an 
observable 06 which does not commute with O,, 
together with the initial (final) state of the n’ systems 
on which the measurement of Ob is to be performed. 
We can suppose (for instance) that these n’ systems 
are such that the measurement of 0, is associated to 
the particular outcome ai. Finally, we consider the 
memory state containing the informations of (18) 
and the outcome of the n’ measurements of 0, : 

[...(N,, , ajl 1; . . . . Wan, ai,>; 

(lv~l’bj;); .4(A&(Jj;,J. (19) 

The quantum laws can be compared directly to the 
results contained in the memory sequence (19). The 
formula P(i + i’) = l(ailbi*)12 gives the expectation 
value of the frequency of the outcome bif associated 
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to a measurement of Ob on a set of systems whose 

initial (final) state, specified in the necessary condi- 

tionsNbk, is lai>. This type of quantum probabilistic 
description is generally successful. On the other hand, 

the reverse formula 

fails to give the expectation value of the frequency of 
an initial (final) state ai”, specified in the necessary 
conditions Nb which are associated with a given 
outcome bit. $ch a failure is quite obvious in the 
instance we considered above, since all the necessary 

conditions Nb specify that their rz’ systems are in 

the unique i&al (final) state k+>. The quantum laws 

are thus successful when they operate from the neces- 
sary condition to the outcome, i.e. in the direction of 
increasing information, while they generally fail in 
the reverse order. But this order bears no relationship 

with any external time order. Moreover, as shown 
previously, it is not necessarily related to an increase 
of the private time parameter tp. To denote the asym. 

metry of quantum inference, it is thus important to 
insist on information increase which is the fundamen- 
tal concept, rather than on time ordering. 

When the usual couple prediction/retrodiction 

expresses this asymmetry, it is implicitly assumed 
that information increases in the direction of increas- 

ing time (without any precision about the private or 
external character of this time). If, instead, the in- 

formation increases with decreasing (private) time, 
another couple of words must be used. We suggest 
postdiction/antediction. But in so far as information 
increase is dealt with, the terms prediction and post- 
diction are equivalent, as well as the terms retrodic- 
tion and antediction. To emphasize the absence of 
any relation between the asymmetry of quantum in- 
ference and time increase, we shall replace the tradi- 
tional distinction prediction/ retrodiction by the dis- 

tinction PP-diction/AR-diction which does not refer 
to time. 

Comment. The above-mentioned concept of retro- 
diction (antediction) only refers to what can be said 
about the content of the memory sequences. It does 
not bear on the event which “really” happened (will 
happen) in the past (future), and was (will be) pre- 
sumably recorded in the memory sequence. The 
giving up of the concept of direct retrodiction (ante- 

diction) in the framework of Everett’s interpretation 
of quantum theory was demonstrated to be a possible 
way to account for the EPR correlations without 
any violation of the locality principle [lo]. 

We have seen that the direction of quantum in- 
ference can be arbitrarily associated to increasing 
or decreasing private time. The question now is to 
know whether the same arbitrariness is still available 
when the observers locate the events in the same 
time. In other words, are two observers able to per- 
form their experiments in two opposite directions of 

the same time? 
A frequent way to answer this question consists 

in noticing that two observers who gain information 
in two opposite directions of (external) time cannot 
communicate with each other [ 111. This simple 
claim has recently been dismissed, and a procedure 
allowing two observers, who “have not the same 

direction of time”, to exchange information, has 
been brought out [ 121. The very meaning of the 
sentence “two observers go in the same (or in opposite) 

direction(s) of time” however seems not to have been 
seriously investigated in ref. [ 121. It is this meaning 
to which we now try to give a precise formulation, 
by comparing the observers’ time-directions of mea- 
surement. The increase or decrease of the tp-param- 
eters involved in the private time of two observers, 

with increasing information in their memory sequences, 
cannot be taken as a satisfactory basis for such a com- 
parison. Indeed, there is no operational proof making 

certain that the tp-parameters used by the observers 
to label their memory states refer to a common order- 
ing of external events. The observers can however 
coordinate their private times by performing measure- 
ments on quantum objects which we shall call “ele- 
mentary clocks”. When the observer 1 measures any 
physical quantity on his elementary clock, described 
by a pure state, he brings about a transition of the 
state towards a mixture. Such a transition, which is 

associated with either increasing or decreasing values 

of the parameter tp, yields an increase of the entropy 
Sc of the clock (Sc = Tr(pc log p,) where pc is the 
density matrix of the clock.). Now, as we already 
know, two measurements performed by a given ob- 
server are associated with an unique sign of variation 
of the parameter tp. An information exchange be- 
tween two observers can be thought of as a mutual 
measurement. In particular, the information increase 
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of the observer 1 about the observer 2, and the en- 
tropy increase of l’s clock, are necessarily associated 
to the same variation of tP. The same can be said of 
the observer 2 performing measurements on his own 
elementary clock, and on observer 1. Whatever tP- 
parameter they use privately, two interacting ob- 
servers are thus bound to note that their clocks ex- 
perience an entropy increase in the direction of 

mutual measurement. 
This reasoning shows that, although the assertion 

according to which two observers who have not the 
same direction of (external) time cannot communicate 
is false, it can be said that the very act of communica- 
tion (with its meaning of mutual quantum measure- 
ment) defines a link between the information increase 
of an observer about the other one, and the entropy 

increase of any quantum object. This link can be 
used by the observers to establish a common time 
direction, by relating it to the entropy increase of 
their elementary clocks. 

In this paper, we have first noticed that in so far 
as time is considered as a parameter independent of 
the observer, the latter can perform a quantum mea- 
surement in whatever direction of this time. But if 
a given observer is supposed to perform some mea- 
surements in a definite direction of this time, whereas 
he performs other measurements in the opposite 
direction, there appears a contradiction. This contra- 
diction has brought out the necessity to introduce a 
concept of private time. Then, it was demonstrated 
that the very definition of a time common to two or 
more observers prevents any observer from perform- 

ing measurements in opposite directions of the latter 
time. The essential difference between a common 

time and the usual concept of external time indepen- 

dent of any observer is thus that asymmetry is built 
in the first one, whereas it must be superimposed 
to the second one. But the direction of this super- 
imposed asymmetry is arbitrary. As Schrodinger 
pointed it out, all the statements about irreversibility 
may even be formulated in such a fashion that they 

are (external) time-reversal invariant [ 131. This is no 
more true when common time is considered. 

I wish to thank Professor B. d’Espagnat for helpful 
discussions. 
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